A New Partnership Between the NRCS and the CCSS

or

NRCS Soil Science Division Staff
Assist with Digging Holes and Installing Sensors

Dylan E. Beaudette
Soil Scientist

USDA-Natural Resources Conservation Service

Talk Outline

- 1 Soil Climate
 - Soil Climate Sensor Networks
 - An Idea
 - Soil Climate Data
- 2 Soil-Water Interaction
 - Key Soil Properties
 - Soil Water Storage / Availability
- 3 The Soil Resource
 - Soil Survey
 - SSURGO
 - Future of Soil Survey

Soil Climate Sensor Networks: SCAN

Soil Climate Sensor Networks: SNOTEL

Ad Hoc Sensor Data: Henry Mount Soil Climate DB

Ad Hoc Sensor Data

weather stations require manual data download

most sensors are installed at 50 cm depth and require re-excavation every 2-5 years to replace batteries and download data

Ad Hoc Sensor Data

Why am I Here?

A New Idea: DWR Collaboration

A New Idea: DWR Collaboration

Soil Climate Data

More Effective Prediction: Above/Below Ground Sensors

Soil Properties Relevant to Hydrologic Modeling

Physical Properties

- \blacksquare texture \to quantity and nature of pore-space \to water retention
- lacktriangle coarse fragment content ightarrow rocks displace water
- lacktriangledown soil structure o macroporosity controls saturated flow
- lacksquare soil depth o more soil = more water storage
- lacktriangleright instantaneous soil moisture ightarrow saturated vs. unsaturated flow

Landscape Context

- lacktriangle drainage / residence time ightarrow lag between precipitation and streamflow
- lacktriangledown organic inputs ightarrow DOC + chlorine ightarrow carcinogenic precursors
- lacktriangle local slope + soil texture + plant density o erosion risk

Soils are complex. Fortunately, there are several "master" parameters that are enough to model the system within a reasonable level of precision.

Water Retention Curve

Sensor Data + Physical Properties: Soil Water Storage

Where Do We Get Soil Data?

Soil is not Dirt

"Soil is a natural body comprised of solids (minerals and organic matter), liquid, and gases that occurs on the land surface, occupies space, and is characterized by one or both of the following: horizons, or layers, that are distinguishable from the initial material as a result of additions, losses, transfers, and transformations of energy and matter or the ability to support rooted plants in a natural environment." —Soil Taxonomy 2nd Ed.

"Man has only a thin layer of soil between himself and starvation." -Bard of Cincinnati

Where Do We Get Soil Data?

Dig holes, describe/sample horizons, and send to a lab for characterization. Or, use Soil Survey data.

Soils and Landscapes are Tightly Coupled

The Soil Profile

A collection of horizons and associated properties define the soil profile.

Soil Data + Landscape Context = Soil Survey

Basic Concepts of Soil Survey

- soils are sampled along *suspected* gradients in soil-forming factors:
 - \rightarrow climate, vegetation, relief, parent material, age, . . .
- lacktriangle soils are mapped by identifying consistent soil \sim environment relationships
- several possible levels of map generalization possible
 - → topographic complexity, budget constraints, expected usage, etc.

SSURGO: Butte County Example

SSURGO: Limitations and Considerations

Map Unit Design

- Any given survey must comply with basic standards, but older surveys reflect a more generalized approach than more modern surveys.
- Polygons represent a repeating pattern of legend entries (map units)
- There is a many:1:many:many (polygon:mapunit:component:horizon) relationship between spatial and horizon-level soil property data.
- Many properties are *estimated* via regression.

Aggregation Notes

- Aggregate horizon data by one of the following methods:
 - top 1m
 - top horizon
 - profile sum■ depth weighted (mean, median, sd)
 - most limiting
- Aggregate component by one of the following methods:
 - component percent weighted (mean, median, sd)
 - largest component (beware ties)
 - major component flag (beware ties)
 - dominant condition

Future Soil Survey: Refinement via Terrain Analysis

- lacktriangle Compound indices of relative landscape position o CTI
- Indices of local convergence/divergence → surface curvature
- Quantitative descr. of soil microclimate → modeled solar radiation

These are all related to local soil climate.

Thank You

Online Resources:

- USDA-NRCS Soils: http://soils.usda.gov
- Web Soil Survey: http://websoilsurvey.nrcs.usda.gov/
- Soil Data Access: http://sdmdataaccess.nrcs.usda.gov/
- SoilWeb: http://casoilresource.lawr.ucdavis.edu/soilweb/
- AQP: http://ncss-tech.github.io/AQP/